Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process.

Article Figure 1

The cuprizone model is a widely used model to study the pathogenesis of multiple sclerosis (MS). Due to the selective loss of mature oligodendrocytes and myelin, it is mainly being used to study demyelination and the mechanisms of remyelination, as well as the efficiency of compounds or therapeutics aiming at remyelination. Although early investigations using high dosages of cuprizone reported the occurrence of hydrocephalus, it has long been assumed that cuprizone feeding at lower dosages does not induce changes at the blood–brain barrier (BBB).

Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer’s disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear.


Under physiological conditions microglia, the immune sentinels of the brain, constantly monitor their microenvironment. In the case of danger, damage or cell/tissue dyshomeostasis, they react with changes in process motility, polarization, directed process movement, morphology and gene expression profile; release pro- and anti-inflammatory mediators; proliferate; and clean brain parenchyma by means of phagocytosis.


Intrinsic neuronal activity is a hallmark of the developing brain. In rodents, a handful of such activities were described in different cortical areas but the unifying macroscopic perspective is still lacking.

Peripheral inflammation is known to impact brain function, resulting in lethargy, loss of appetite and impaired cognitive abilities. However, the channels for information transfer from the periphery to the brain, the corresponding signaling molecules and the inflammation-induced interaction between microglia and neurons remain obscure.

The rodent olfactory bulb (OB) is continuously supplied with adult-born cells maturing into GABAergic neurons. Using in vivo ratiometric Ca2+ imaging to readout ongoing and sensory-driven activity, we asked whether mature adult-born cells (mABCs) in the glomerular layer of the bulb become functionally identical to resident GABAergic (ResGABA) neurons.

Throughout the lifespan, microglia, the primary innate immune cells of the brain, fulfill a plethora of homeostatic as well as active immune defense functions, and their aging-induced dysfunctionality is now considered as a key trigger of aging-related brain disorders. Recent evidence suggests that both organism’s sex and age critically impact the functional state of microglia but in vivo determinants of such state(s) remain unclear.

Therefore, we analyzed in vivo the sex-specific functional states of microglia in young adult, middle aged and old wild type mice by means of multicolor two-photon imaging, using the microglial Ca2 + signaling and directed process motility as main readouts. 

read more: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00750/full

Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5’-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells.